metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Min Hong, Handong Yin* and Daqi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

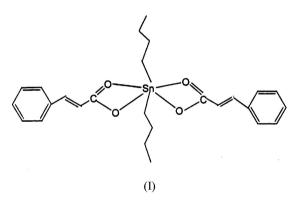
Correspondence e-mail: handongyin@lctu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.016 Å R factor = 0.044 wR factor = 0.138 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-n-butyldicinnamatotin(IV)


In the title complex, $[Sn(C_4H_9)_2(C_9H_7O_2)_2]$, the central Sn^{IV} atom, lying on a twofold rotation axis, is situated in a skew-trapezoidal bipyramidal geometry and the basal plane is defined by two asymmetrically chelating carboxylate groups. The two remaining positions are occupied by two *n*-butyl groups which lie over the weaker Sn-O bonds.

Accepted 8 March 2005 Online 25 March 2005

Received 17 January 2005

Comment

From Fig. 1 it can be seen that the Sn atom in the title compound, (I), exists in a skew-trapezoidal planar geometry in which the basal plane is defined by the four O atoms of the two chelating carboxylate groups of the cinnamate ligands. The two remaining positions are occupied by two *n*-butyl groups which lie over the weaker Sn-O bonds. The Sn atom lies on a twofold rotation axis.

The coordination geometry of the central Sn^{IV} atom can be described as distorted octahedral, with atoms C10, C10ⁱ, O1 and O1ⁱ occupying the equatorial positions [symmetry code: (i) -x + 2, -y + 2, z], and O2 and O2ⁱ occupying the axial positions. The molecular structure consists of a monomer with a hexacoordinated Sn^{IV} atom surrounded by four O atoms and two *n*-butyl groups. The coordination polyhedron of the Sn^{IV} atom can also be described as a highly distorted octahedron, as a bicapped tetrahedron with O atoms, O2 and O2ⁱ, capping two faces, or as a skewed trapezoidal bipyramid with the butyl groups in apical positions. The carboxylates are bidentate, with one pair of short Sn-O bonds [Sn1-O1 and Sn1-O1ⁱ of 2.225 (6) Å] and one pair of weaker Sn–O bonds [Sn1–O2 and $Sn1-O2^{i}$ of 2.547 (5) Å]. Both carboxylate groups are nearly coplanar. The structure of (I) is similar to those reviewed by Tiekink (1991) and to that of di-n-butyltin bis(oaminobenzoate) (Meriem et al., 1990). There is a good agreement in their structural parameters: the short Sn-O distances lie in the range 2.077–2.156 Å and the long Sn-Odistances in the range 2.510-2.711 Å. The angles lie in the range 79.5–84.4° for $O1-Sn1-O1^{1}$ [78.7 (3)° in the title

 \odot 2005 International Union of Crystallography Printed in Great Britain – all rights reserved compound], $165.3-172.5^{\circ}$ for O2-Sn1-O2ⁱ [173.0 (3)^o] and $130.6-146.2^{\circ}$ for C10-Sn1-C10ⁱ [135.2 (6)°]. All these structures display either an approximate or crystallographically imposed C_2 symmetry, with the exception of (*n*- $C_4H_9)_2Sn(O_2CC_6H_4NH_2)_2$ (Meriem et al., 1990), in which the amino groups of the ligands are hydrogen bonded to carboxylate O atoms.

Experimental

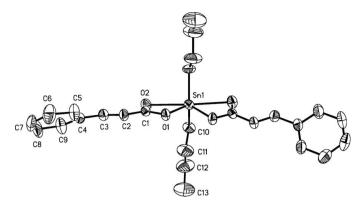
To a benzene suspension of (n-Bu)₂SnO (2 mmol) was added a benzene solution of cinnamic acid (4 mmol) and the mixture was refluxed for 5 h, with water formed during the reaction being removed azeotropically with a Dean-Stark apparatus. The clear solution obtained after filtration was evaporated in a vacuum to give a white solid. The product was recrystallized from benzene-ether and colorless crystals suitable for X-ray diffraction were obtained (m.p. 445 K). Analysis calculated for C₂₆H₃₂O₄Sn: C 59.18, H 6.07%; found: C 59.22, H 6.01%.

Crystal data

$[Sn(C_4H_9)_2(C_9H_7O_2)_2]$ $M_r = 527.21$ Orthorhombic, <i>Pba2</i> a = 9.833 (3) Å b = 25.403 (4) Å c = 5.1578 (19) Å V = 1288.3 (6) Å ³ Z = 2 $D_x = 1.359$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from 2295 reflections $\theta = 2.2-21.7^{\circ}$ $\mu = 1.02 \text{ mm}^{-1}$ T = 298 (2) K Block, colorless $0.47 \times 0.38 \times 0.22 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.646, T_{max} = 0.807$ 6259 measured reflections	2247 independent reflections 1536 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 10$ $k = -24 \rightarrow 30$ $l = -6 \rightarrow 6$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0806P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.138$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.00	$\Delta \rho_{\rm max} = 0.86 \ {\rm e} \ {\rm \AA}^{-3}$
2247 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$
141 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	972 Friedel reflections
	Flack parameter $= 0.11 (10)$


Table 1

Selected geometric parameters (Å, °).

Sn1-C10	2.099 (7)	Sn1-O2	2.547 (5)
Sn1-O1	2.115 (6)		
C10-Sn1-C10 ⁱ	135.2 (6)	C10 ⁱ -Sn1-O2	90.4 (3)
$C10-Sn1-O1^{i}$	103.6 (3)	O1 ⁱ -Sn1-O2	132.4 (2)
C10-Sn1-O1	110.8 (3)	O1-Sn1-O2	54.6 (2)
O1 ⁱ -Sn1-O1	78.7 (3)	$O2-Sn1-O2^{i}$	173.0 (3)
C10-Sn1-O2	86.9 (3)		

Symmetry code: (i) 2 - x, 2 - y, z.

All H atoms were positioned geometrically and refined as riding on their parent atoms, with aromatic C-H distances of 0.93 Å,

Figure 1

The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. Unlabeled atoms are related to labeled atoms by the symmetry code (2 - x, 2 - y, z).

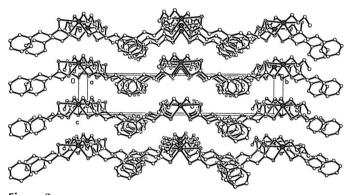


Figure 2 The crystal packing of the title complex. H atoms have been omitted.

methylene C-H distances of 0.97 Å and methyl C-H distances of 0.96 Å. The $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for the methyl H atoms and at $1.2U_{eq}(C)$ for the other C-bound H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystal Materials, Shandong University, China.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Meriem, A., Willem, R., Meunier-Piret, J., Biesemans, M., Mahieu, B. & Gielen, M. (1990). Main Group Met. Chem. pp. 49-54.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-5.